7388

—

NACA TN 2473

N {

NATIONAL ADVISORY COMMITTEE
'FOR AERONAUTICS

TECHNICAL NOTE 2473

ON THE SPECTRUM OF ISOTROPIC TURBULENCE
By H. W. Liepmann, J. Laufer, and Kate Liepmann
Californiea Institute of Technology

Weashington
November 1951 AF M DC

CHNICAL LIBRARY
T AFL 2811

| WN G4V AHVHE HORL

1 P L

: I bﬂssqulnl



*

oo -

TECH LIBRARY KAFB, NM

R

00bL558
NATIONAL. ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE 2473

ON THE SPECTRUM OF ISOTROPIC TURBULENCE

By H. W. Liepmenn, J. Laufer, and Kate Liepmann
- SUMMARY

Measurements of the spectrum and correlation functions at large

Reynolds number |RN = 105 based on the grid mesh) heve been made, as
well as a serles of accurate spectrum measurements at lower Reynolds

number (RN s lOu .

The results are compared with the theoretical laws proposed in
recent years. It 1s found that the measurements at large Reynolds
numbers exhibit a range of frequencies where the spectrum 1s nearly of

the form n 5/3

The largest part of the spectrum iIn the initial stage of decay at
the lower Reynolds number wes found to follow closely the simple spec-~
A

B+n
of fluctuation. At x/M = 1000 (where x is the distance behind the
the grid and M 1is the mesh size) the spectrum epproaches a Gaussian
distribution.

trum

, where A and B are constants and n i1s the frequency

The second, fourth, and sixth moments of the spectrum have been
computed from the measurements and are discussed in relatlon to theo-
retical results.

The significence of the number of zeros of the fluctuating velocity
u(t) 1s discussed and examples of measurements for the determinastion of
the microscale of turbulence A from zero counts are glven.

INTRODUCTION

A field of turbulent fluctuations represents a dissipative system.
Viscosity will tend to disslpate the energy of the fluctuations into
heat end, 1f a stationary state of the system is to be kept, energy
must be continuously supplied to the fluctuatlons. It 1s characteristic
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of fluid flow phenomena that the rate of dissipation is strongly influ- A
enced by the inertia terms in the equation of motion. These convective, e
nonlinear terms do not describe any mechanism for the production of hest 1

from the kinetic energy of the fluctuating field and their influcence
upon the rate of dissipatlion is therefore indirect. The rate of dissi-
pation is proportional to the mean square of the vorticity. The non-
lineer inertis of-the fluid motlon usually tends to increase this mean
square. A similar mechanism is well-known in fluid mechanics in the
shock-wave formatlon where the tendency to steepen the shock front is
balanced by the tendency to diffuse 1t because of the viscosity and heat
conduction of the fluigd.

The understanding and analytical formulation of the nonlinear effects
upon the vorticity distribution 1s a central problem in turbulence
research. In the search for an understanding of this mechanism Taylor's
introduction of the concept of isotropic turbulence was very important
(reference 1). Isotropic turbulence represents & much simpler type of
turbulent motion than the general shear flow problem but does incluvde
many cheracteristic features of the general problem. Most of the recent
progress in turbulence research came from investigations of isotropic
turbulence. Kérmén (reference 2) introduced the convenient  formalism

of the correlation tensors of d&ifferent—rank. K£rmén and Howerth !\
(reference 3) then gave the first equation in a suitable form relating
the double correlation function to the triple correlation function.

This equation shows the balance between inertia and viscous forces in a
turbulent field. The triple correlation represents the nonlinear terms
of the equation of motion. The Kérmin-Howarth equation is clearly
indeterminate as long as one does not have an additional analytical
representation, in terms of the double correlation functions, of this
fundemental process of vortex regrouping.

The theoretical research of the last few years has made some pro-
gress at least toward an understanding of isotropic turbulence.
Kolmogoroff (reference &) introduced the concept of local isotropy into
turbulence, that is, the hypothesis that the motion of the smaller eddies
in turbulent flow is always isotropic. This hypothesis, for which there
is some experimental verification at present, makes an investigation of
isotropic turbulence even more interesting. Kolmogoroff then proceeded,
essentially on the basis of dimensional analysis and very simple physical
reasoning, to arrive at some results concerning the correlation function
and so forth. A thorough review of Kolmogoroff's work has been given
by Batchelor (reference 5). Onsager (reference 6), Weizslcker (refer-
ence 7), and especially Heisenberg (reference 8) attacked the problem from
the point of view of the turbulent spectrum rather than the correlation
function. Taylor hed introduced the concept of the spectrum into
turbulence as eerly as 1938 (reference 9). EHowever, the one-
dimensional form of the spectrum as given by Taylor is very convenient ’
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for experimental measurements but not too convenient for theoretical
study. Helsenberg therefore introduced a three-dimensional space spec-
trum function E(k). The function E(k) dk 1s defined as the fraction
of the totael turbulent energy with wave number between k and k + dk.
Taylor's spectrum ¥ k15 dk, 1s defined as the fraction of turbulent

energy with components of the wave-number vector k 1n one fixed direc-
tion between k; and kl + dkl Helsenberg's and Taeylor's spectrum

functions are Fourler transforms of the correlatiom functions of Karman
Corresponding to the Kdrmin-Howarth equation, a similar equation for

E(k) may be written which obviously does not yield anything different
from the equations for the correlation function. ‘' However, it 1s possible
that the concept of spectrum is somewhat more Intuitlve than that of
correlation function - probably because spectrum is a more familiar
concept from other fields of physics - and most recent work operates
essentially with the concept of spectrum. KXnowledge of the spectrum
function E(k) 1s sufficlent to describe the turbulent field completely.
A rather complete survey of this group of recent theoretlcal investiga-
tions and the experimental evidence can be found in Batchelor's lecture
to the Seventh International Congress for Applied Mechanics (refer-

ence 10). A brief discussion of some theoretical results for later
reference 18 included in the section "General Considerations" of this
report.

The general alm of the present experimental Investigation is a
study of the nonlinear exchange mechanism. There 1s not at present any
straightforward and simple way to measure the exchange terms directly.
In fact, the research has to start on a more basic level. A fairly
broad investligation is needed to make sure that the flow condlitions are
close to those assumed by theory and that the experimental equipment is
satisfactory. Finally, a rather thorough knowledge of varlous aspects
of the turbulent fileld is needed before experimentel results can be
evelusted intelligently.

In the present work the following points were investigated:

(1) The correlation function and the spectrum at large Reynolds
numbers

(2) The decay, microascale, and spectrum at intermediate and low
Reynolds numbers

(3) The zeros of the fluctuating velocity components and their
relation to the spectrum and moments of the spectrum

Part of these measurements can serve as an independent check of
results obtained by Batchelor and Townsend and others, and part of the
results are new. It should be emphasized here that the ultimate alm of
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& more or less direct measurement of the exchange term has not—been
caerried out—yet and, In fact,wes not even attempted. It was felt neces-
sary first to improve and refine the methods, especilally the measurement
of the spectrum, and, as mentioned before, to gain a view of many aspects
of the turbulent field. '

The investigations were carried out at the Guggenheim Aeronsutical
Laboratory, California Institute of Technology, as part of the turbulence
research conducted under the sponsorshlp and with the financial assist-
ance of the National Advisory Committee for Aeronautics. The authors
would like to acknowledge the cooperation of Mr. F. K. Chuang and the
stimulating discussions with Professors Lagerstrom and DePrims. Mr. M.
Jessey was responsible for the design and construction of most of the -
electronic equipment and this essential help is gratefully acknowledged.

SYMBOLS
uy turbulent velocity fluctuation (1 =1, 2, 3)
Xy space coordinate (k =1, 2, 3)
U mean veloclty
Eé mean square of veloclity components
RiJ Kérmén's double correlation tensor
I'i'j Betchelor's spectral tensor.
k wave -number vector
ky components of-wave-number vector
n frequency of fluctuation
B(k) Helsenberg's spectrum density
f"(kl) Taylor's spectrum density in space
F(n) Taylor's spectrum density in time
0= II: g) dimensionless spectrum density parameter
{ = gF(o)n dimensionless frequency parameter

<
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Homogenelty, isotropy, end stationary state.- A field of turbulent

double correlation functions ST
triple correlation functions o
scale of turbulence

microscale of turbulence

averasge number of "¢ velues" per unit time of a random
function —

viscoslty
kinematic viscosity

dimensionless parameter

value of random variable u(t)

value of random varisble du/dt

density

pressure fluctuastion

sphericel coordinates 1in k-space =

for case where r 18 measured ln directlon normal to uy
rate of turbulent energy dissipation

probabllity distribution of Ng

GENERAL CONSIDERATIONS

Definltion of Terms

fluctuations in space is given by the veloclity u = [:ui(x.1 ,t)] « The —_—

field is called homogeneous if all mean values of u and their
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derivatives do not depend on the value of xj. It 18 celled isotropic

if these mean velues are Independent of reflection and rotation of-the
coordinate system. In most measurements of—turbulence a velocity com=-
ponent uy 1s observed as a function of time at a fixed position. For
example, measurements are made in a wind tunnel at some distance behind
the grid. In this case the process 1s called statlonary; mean values
of the square of u(t) and its derivatives do not depend upon time and
the correlation functions depend only upon the relstive time interval.
In the definition here one has to use the ensemble average to take a
mean value. If the ordinary time average 1s used, the statement that
the mean values do not depend on time becomes trivial. A statlonary
process in vime is anslogous in definition to homogeneity 1n space.
Isotropy has no such counterpart since time is a single coordinate.

Time and space derivatives.- It 1s typical of present turbulence
research that measurements are often made in a moving stream at a fixed
position. On the other hand, theoretical considerations often deal with
space distribution of a turbulent fileld at—rest. To relate experiments
and theory one uses the fact that the space coordinate In the direction
of the mean motion is timelike. This fact is sometimes expressed by
stating that the operator Jd/dt can be replaced by -Ud/dx if U is
the mean veloclity In the direction x.

This statement 1s obviously never correct rigorously. In certain
applications the difference, that—is, the error, can be given or esti-
mated. For example, for any stationary process u(t) which possesses
a derivative

du _
uE-O (l)

applying the exchange of operators simply glves

ou _ _tp, OU _ _ 2/
uat UU.&—U
But
2
-y Sus
= 7O

since this term determines the decay of turbulence and for isotropic
turbulence has the value
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It 1s possible, however, to use the interchange between time and space
variables in certain mean velues. For exemple, 1t has been found experi-
mentally by Townsend (reference 11), in agreement with the measurements
presented here, that the mean square of the time derivative agrees
closely with the mean square of the space derivative 1n the directlon

of mean motion; that is,
2 2
(g:) a8 Uz(au) (2)

To estimate here the degree of approximetion within which this
result is true 1s more complicated. One can write down the equations
of motion and compute these terms and then try to estimate the differ-
ence; for example, for

aui,,U?L,LuJ?E;:_LQp_',,Weui

W x1 ox 3 (o) axi
Hence,
2 2
(911-1) = égi + R
ot oxy
with

du du ' 2 duy \2
= (U =% —t 4+ L - - b X
R (U St Y 3, + 2 % vVaui) Ua(axl)

The largest term in R appears to be

——r

dug gy 24wy (2
Ugl--uJ ax‘j “UM:—_ aXl

2
Neglecting this term compared with @(%1) hence would amount to an

1
error of the order of the turbulence level V:é/ .

Mean values.~ So far mean values have been used without any defini-
tion of what is meant by putting a bar over certein quantities. As a
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matter of fact, the definition and use of mean values in turbulence is &
not an easy problem. Experimentally, the average is, in generasl, the
time average provided by the response of & measuring instrument, for
example, a thermo-cross-gelvanometer combination. This time average is A

equivelent to % f () @ where + is time and @ 1s the time interval

Por the aversging. For theoretical considerations an ensemble average =
is often more convenient. Experimentally, an ensemble averasge can be

obtained by averaging over single measurements separated by time inter-
vals sufficiently large to have zero time correlation. If the time @ _
in the averaging process is large compared with the correlstion time .
scale T, then ore should expect the time and ensemble averages to agree. -

The finlte extent of the measuring probe, that is, specifically, the
length of the hot-wire, introduces an sdditional average over space in
turbulence meesurements. If the length of the hot=wire 1s not too great
this cen be accounted for by making corrections based on & rough estimate
of the space characteristics of the turbulent field.

Correlation functions, spectrum.- The space distribution of a .
homogeneous turbulent field is characterized by giving the space correla- ¢
tions in the form of the well-known K€rmén correlation tensors s

\

Rij _ ui(xk’_t_)u,j (xk;’t)
ul

( (3)

=

/
The space spectrum is then most conveniently defined as the Fourier

trensform of Ri‘1 (references 12 and 13). Let k denote the wave-

number vector, that is, the vector in the direction of wave propagetion
with asbsolute magnitude k = |k| = 2nfA, A being the wave length.
Then e spectral tensor I‘1~j can be defined by

rd=ds | /R ()t ED ar(z) (%)
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Heisenberg's spectrum E(k), that is, the energy density of turbulent
fluctuations contained between k and k + dk, i1s then obtained as
the mean value '

~ 1 2% 1 —_=
B(k) = &= L, ()2 sin 6 a0 & (5)

For 1sotroplc turbulence RiJ and I‘iJ are each expressible by a
single function £(r) and E(k), respectively. -

The spectrum function F(n) introduced by Taylor was originally
defined in time frequency n rather than in space. The relation
between F(n) and the Helsenberg spectrum thus involves an interchange
between time and space varisbles. The equivalent definition of the

Teylor spectrum in space 'f"(kl) is the fraction of turbulent energy

contained between k; and kl + d.kl where k1 denotes the component

of k 1in a fixed direction. The direction is, in general, chosen to
correspond to the direction of mean speed U in the experimentel setup.

There exists a simple relatlon between ‘ﬁ, the Teylor spectrum
function, end E, Helsenberg's spectrum function, which is valid for
homogeneous, isotropic turbulence, '

E(k) = %E@ﬁ"(k) - & (x)] L
(6)
[ E(k) dk = 1
where from equation (5)
'f"(kl) = %— [ £(r)cos krdr
[ (7

£(r) =[ %"(kl)cos kv dk,




10 NACA TN 2473

If one considers agailn the stationary time process, then one can define
the corresponding time correlation and time spectrum es 1is standard
practice. If u(t) 1s a certain velocity component measured at one »
space posltion in the course of time, then one can define

¥ = u(t :'_21')11(1:) (8)
" . _

where T denotes a time interval. The corresponding spectrum F(n)

is then defined as the fraction of u2 contained in the frequency band
n, n + dn, that is, the so-called "power spectrum." One has then:

F(n) = & fw ¥(T) cos 2mr ar (9)
(0]

¥(T) =£ F(n) cos 2mT dn (10)

From equations (7) and (10), respectively, follow then the relations
between spectrum, correlation function, end mean derivatives of the
fluctuation which are so often used in turbulence. Specifically, the
following quantities will be used:

(1) The space scale L and time scale T of turbulence defined by:

l: £(r) ar

L =
= gf(o) (11)
T=l:zv('r) ar
- ¥0) (12) r
m
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(2) The so-called microscale A or the corresponding mean-square
frequency n2 defined by

P ]

3ol
= f i %) aiy - (13)
02 = fnal?(n) dn (1k4)
From equations (T) a:l1d (10), clearly:
k—lé = -£"(0)
_ L (o
- ;z(ax) (15)
biPn? = —4"(0)
- ;L__——a
= = Bt) (16)

Triple correlatlons.- For a description of the dyhamics of turbu-
lence one needs also the triple correlstlon functions which are intimately
connected with the nonlinear terms in the equatlons of motion. PFor 1iso-
tropic, homogeneous turbulence the triple correlation tensor of Kérmén
cen be expressed again by a single function, for example, h{r) where

h(r) = ﬁ(xi’t)%(xi:t)ul(xiit)
(@2
S B - (17)
xt'=x 1=2,3
/
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Functions equivelent to the spectral densities can be introduced
here as was first done by Lin (reference 13). For example, one can
define a function 'Hi(kl) equivalent to the Taylor spectrum for the

double correlations and write

2)3
le]_(k'.L) = gﬁu—i-)ﬁ[h(r) sin k r dr (18)

Similar relations in time can also be written.

Equations of Motion
The equation for the correlation function in homogeneous, isotropic

turbulence is the Kdrmén-Howarth equation which is, of course, a conse=
quence of the Navier-Stokes equations: )

e of@ (2 ) - 22 1 ) (1)

ar r arz r ar

where f and h are the double and triple correlation functions defined
above.,

The corresponding equation in the wave-number space has been given
by Lin (reference 1k4):

§§££)- + W(k,t) = -2vk2E(k) (20)
with
w(k,t) = §k2E:2111"(k) - kHl'(kZl

A thorough discussion of these equations 1s given by Kirmén and Lin
(reference 15).

Form of Spectrum Functions

The aim of a theory of isotropic turbulence is the determination of
the function #£(r) or E(k). Earlier attempts to obtain f£(r) are
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found, for example, in the Kdrmén and Howarth paper (reference 3). In
recent years it has become more common to operate with the spectrum
function rather than with the correlation function.

In the present state of theoretical analysis of B(k) or #£(r)
it is best to distingulsh two steps. First, one cen arrive at some
conclusions regarding the generael form of E or £ in certain regioms
without meking any explicit statement about the nonlinesr term W(k,t)
or h(r). Second, one can arrive at conclusions by assuming a specific
form of W or h.

The first set of theoretical results includes Kolmogoroff's theory
of locally isotropic turbulence and the results obtalned concerning E

and f, especially the k-5 / 3 law for E(k). This has also been
obteined independently by Welzsédcker (reference 7) and Onsager (refer-
ence 6). The set includes also the k* law for small wave numbers
obtained by Iin (reference 14), Batchelor (reference 12), and others

and, further, Loitsienskiil's (reference 16) result concerning the invari-

ance of u2 ruf(r) dr during decay. Finally, the behavior of the
0

turbulent field at very low Reynolds numbers as already discussed by
n end Howarth, Loitaianskii, and recently again by Batchelor and
Townsend (reference 17) belongs to this group.

On the other hend, the k™1 law of Helsenberg (reference 8) for
large wave numbers and all relations obtalned for medium wave numbers
depend on assumed forms of the exchange term W(k,t), h(r,t), or
corresponding terms. Kérmén (reference 18) bas recently systematized
these assumptions. An analysis of all these various laws and assumptions
can be found in Batchelor's lecture to the Seventh Internationsl Congress
for Applied Mechanics (reference 10) and in the recent paper by Kerman
and Lin (reference 15).

From the point of view of experiment these two goups of results
differ essentially. Verification of results of the first group mainly
means & verification of rather broad and essentially kinematic assump-
tions. For example, the theory has until now aslways been based on the
consideration of an unlimilted turbulent field with zero mean velocity.
Experiments are carried out with turbulence which is produced by a
specific mechanism and which 1s certainly somewhat inhomogeneous turbu-
lence. Furthermore, the maximum length or minimum wave number in an
experimentel setup is limited. The range or velidity in Reynolds number,

for example, for the k"'5 3 law, 1s not easily predictable and, similarly,

the range of wave numbers for the k* Ilaw.
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Consequently, the aim of experimenis here is to estmblish the Y
applicability of the theory. Formally, there is little doubt that these
laws apply in the assumed kinematical model since the derivation from
the equations does not involve any additional assumptions. r

The aim of experiments for the verification of the second group of
results goes deeper beceuse, in addition to the applicability of.the
theories to the experimentael setup, the physicel mechanism of exchange
is involved here. It is consequently impossible to work on the second
group of problems fruitfully without having gone to a certumin extent
through the first.

A further question to the experimenter is the consistency of measure-
ments. Quite often the theoretically defined quantity cannot be measured
directly. Finally, the sensitivity of the form of-the measured quantity,
as, for example, E{k), toward the assumptions made is important. This
often makes s decision in favor of a certain specific assumption very
dubious.

These simple considerations are included here to Justify the
approach to the problem. Even if the ultimate aim is quite clearly
recognized it 1s not always possible to direct—the experiments immediately ¢
toward this aim since any result-will be ambiguous. Clearly, a direct
experimental approach to the turbulent exchange problem is most desired
but this epproach does not seem very fruitful before the background is
somewhat cleared up.

Remerks on Turbulen£ Fluctuations as Stationary Random Processes

If a turbulent velocity component u 18 messured at a fixed posi-
tion as function oftime, u(t) denotes a stationary random process.
Processes of this general type have been considered in physics and math-
ematics before and it is interesting to see how turbulence fits into
these known processes. Brownlan motion and the shot effect are examples
of processes of this type. Often the term "random noise" is applied to
processes of this kind. If one measures the turbulence spectrum in the
standard fashion by analyzing the output of a single stationary hot-wire,
or i1f one messures the time derivative in the same way by differentiating
the output current of a single hot-wire, and so forth, in all these cases
one analyzes a stationary one-dimensionsel random process and application
of these results to the three-dimensional space field of turbulence
requires additional steps, such as the Interchange of space and time
varlables dlscussed above.

Before the results of measurements are given in this report it
appears useful to dlscuss briefly two aspects of the problem of v
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stationary random process which are used in the meagurements, namely, the
power spectrum and the mmber of zeros of wu(t) per unit time.

Power spectrum.- If g(t) denotes one turbulent velocity component,
not necessarlily the one in the direction of mean motion, one can define
a power spectrum F(n) as discussed in the section "Definition of Terms."
The necessary conditlons underlying the concept can be found in the
literature, for example, in references 19 and 20.

Dryden (reference 21), who carried out one of the earliest measure-
ments of the turbulent spectrum, found that the measurements of F(n)
‘could be represented rather well by the function

F(n) = —F0) (21)

1l + c2n?

where c¢ and F(0) are characteristic constants related by the normeliza-
tion of F(n). The corresponding time correlation V¥(T) 1is then

ory = 1T (22)

Clearly, a function of this form cannot represent the spectrum for
arbitrery high values of n since then

L[W.naF(n) dn = =
0

Thus the dissipation of turbulence - if for the moment one taekes the

ot ox
measurements showed that for large values of n the measured spectrum
falls below the values given by equation (21).

2 2
reletion (QE) al(ég) for granted - becomes infinite. Indeed, Dryden's

The measurements of F(n) made during the course of the present
investigations are accurate enough to obtain

n2 = Z n°F(n) dn the second moment of F
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a8 well as
[ ]
n¥ = Jr nhF(n) dn the fourth moment of F
0

both of which are found finlte - as expected - and in general agreement
with measurements of-Batchelor and Townsend of the mean square of the
first and second derivatives of u(t). However, in agreement with
Dryden it was found that by far the largest part of the turbulent energy
is contained in a portion of the spectrum F(n) for which the simple
form of equation (21) gives & good approximation. Hence, one may take
at present this form of F(n) as, at least, an empirical interpolation
formula from experiments and one may Inquire into the general nature of
such a spectrum. Without implying too much about the physical signifi-
cance of the simple spectrum function the following properties are
interesting and possibly significant. Dryden noted that this spectrum
plays a specific role In random processes. - Today one can formulate the
significance of this spectrum as follows: ~

(1) If the probability distribution of u(t) is Gaussian - as is
known with good accuracy from experiments of Simmons and Salter (refer-
ence 19) and Townsend (reference 11) - and the spectrum has the form

-—1¥-—§, then the process is Markoffian; that is, it 1s the simplest
B+n : . .- .
rendom process for a continuous variable (see reference 20).

(2) Processes leading to a spectrum of this type are well-known and
falrly common. For example, the so-called random telegraph signal, that
is, a variable which attains the values a and -a Jumping from the
one value to the other at random times, has this spectrum. The number
of chenges of sign is then given by e Poisson distribution.

Hence, there may be a possibility of relating some part of the
turbulence to the random shedding of vortices by the grid. This appears
worth a further investigation. Furthermore, it is interesting to note
that - assuming again that the exchange of time and space varlables is
closely valid - the simple spectrum satisfies the kinematic requirement
for low wave numbers. The corresponding Heisenberg spectrum behaves

like k% for k—>0. Indeed, it follows simply from equations (6) that

F(O has

the Heisenberg spectrim E(k) corresponding to F(n) = T
+ ¢“n

the form
B(k) = Lok*

Zl + L2k253

L 4]
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where L is the scale of turbulence and hence E(k) = k% as x—»0.
Furthermore, for large values of k, that i1s, kL >> 1

which makes it experimentally very difficult to distinguish this spectrum
behavior from the k-5/3 1law.

It is not Intended here to overemphasize the importance or physical
significance of the simple spectrum correlation functions. It is only
pointed out that the simple spectrum 1s an excellent interpolation
formuls with possible physicel significance which has to be studied .
further and that one should be qulte careful in the experimental verifi-

cation of power laws such as the k'5/3 law. Using the simple spectrum
Loitslanskii's invariant becomes simply proportionel to

fféEJF(o)] 5 x ud(uL)’ (23)

a form which can be experimentglly determined. Results are given later
in this report.

Number of zeros of u(t).- Another rather interesting problem
arising in stationary random processes is the expected number of passages
through zero (or any other constant value) per unit time. Questions of
this nature have been discussed in recent years, for example, by Rice

(reference 22).1

Let p(&,n) dt dn denote the probability at a given time of finding
u(t) between the values & and ¢ + d and du/dt between 1
and 17 + dn. Then p(E,n) dt dny denotes the time the trace spends in
the interval ¢, ¢ + d¢ having a derivative between 1 and 7 + dn.
To obtain the number of passages through the interval 4§, regardless
of the time spent at a crossing, p(f,n) d¢ dn has to be divided by the

1Further references to other investigations Into the subject, espe=-
clally the work of Kac, are given in Rice's paper.
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time spent in the interval at e crossing to reduce all passages to the
pame statistical welght. Let T be this time; then clearly

L&
In |

since n 1s the "velocity” in crossing the Iinterval 4 and |n| bas
to be used since T does not depend on the sign of 1. Hence, the
number of passages through &, & + dt with a specific value of the
derivative v 1s given by

Rg.g.l.ﬂl_dj.ﬂ - |n|p(§,n) én

T

and, consequently, the total number of passages through the intervel
regerdless of 17, by

Ng -jw In|p(€,n) én (24)

Thig is the formula gilven by Rlce in reference 22 where a more rigorous
proof will be found.

So far the assumptions underlying Ng¢ are very general. To obtaln
a gimple relation between the spectrum and _Ng additional assumptions

are necesgary. These assumptions are Justified for linear processes,
such as electrical noilse problems and so forth, but certainly not
rigorously true for turbulence. §8till it is of-conslderable interest to
gtudy the effect of possible deviation from these assumptions on Ng.
Since u(t) 1s a stationary random process

du
u— =0
dt

that 1s, there 1s no correlation between u and du/dt. If both u
and du/dt have Gaussian distributions, then it is directly follows that

(25)

(8

ty

o
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Specifically, the number of zeros Ny 1s glven by

)

= uf n°F(n) dn
0

- ln? (26)

[«7

e 1
No ?

ﬂm" -
oY

In this form farmula Ny 1s quite similar to the harmonic value for
which the number of zeros Ny 1s glven by

NO-&

The distrlbution of du/dt is, however, in general, not Gaussien. This
fact 1s essentially a consequence of the nonlinearity of the equations of
motion and was verified experimentally by Townsend (reference 11). 8till,
it is interesting to investigate the deviation of Ny from the mean-

square frequency as obtained by other means, for example, from F(n)

‘du 2
dt
that the influence of the nonlinear terms should become unimportant.
Unfortunately, an accurate comparison cannot be given as yet. It turned
out that 1t is experimentally easy to count the number of zeros with
fair sbsolute accuracy, that i1s, of the order of 110 percent. To
increase the accuracy beyond this point proved to be more difficult
because of the very large range of passage time which the counting
apparatus had to reproduce accurately. Consequently, only preliminary
measurements are briefly reported here.

or , @and to extend this comparison to Reynolds numbers so low

APPARATUS AND METHODS

Wind Tunnel.

The wind tunnel used for most measurements was the small 20-inch-
square GALCIT “"Correlation" tunnel bullt many years ago for similar
investigations. Repeated improvements in the tunnel have reduced the
free-stream turbulence level to the order of 0.03 percent. Traversing
equipment along the tunnel axis for about 200 centimeters' length 1s
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provided. The GAICIT 10-foot tunnel was used for some investigations ) *
at high Reynolds numbers reported here. §Sketches of the two tunnels
are included as figures 1 and 2. .

Grids B

The grids used in the present investigation differed somewhat from
previous ones. They conslsted of precision, woven-brass screen mounted
in wooden frames. The screens, obtalned from Tyler and Company in
Cleveland, are very uniform. The geometry of the grids 1s given below.

Rod diameter d Mesh slze M
Grid (cm) ’ (cm) ’
1 0.413 1.68
2 .184 .818
3 .108 422
y 0l45 1kl

Only in the 1l0=foot tunnel was a grid of the two-plane type used. The
dimensions for this grid were M = L4 inches and d = 0.75 inch.

Hot-~-Wire Apparatus

Except-for the investigations in the 10-foot tunnel, wires of -
0.00005-1nch diameter were used, In the 1l0-foot tunnel the wire dlameter
was 0.00025 inch. The wires varled in length, depending on the problem,
between about 0.3 centimeter and 0.1 centimeter. The slilver cover of the
platinum wire was in all cases etched off before soldering the wires to
the tlps of sewlng needles. . -

The amplifier used was rebuilt for the investigation. The frequency -
response 1g flat within a few percent between 1/2 cycle and 25,000 cycles.
A cut-off fllter at approximately 10,000 cycles 1is provided to reduce
nolse and pickup whenever there 1s no need for an investigation of higher
frequencies. This was the case most of the time in the present set of
experimenta.

A resistance-capacitance compensator and a stage of differentiation
using a second compensated amplifier is incorporated. The output is
read with a thermocross potentiometer arrangement. The compensation 1s
adjusted by means of a square wave arrangement.
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Frequency Analyzer

A wave analyzer from Hewlett and Packerd with an adjusteble band
width from nominal 30 cycles to 145 cycles was used for spectrum meesure-
ments. The analyzer was slightly modified to allow reading the output
on the thermocross meter.

The measurementes in the 10-foot tunnel were made with a General
Radio Sound Anslyzer which 1s not so sultable for turbulence measure-
ments as the wave analyzer. Part of the very marked improvement in
accuracy between earlier spectrum measurements in the 10-foot tunnel
and the recent measurements in the 20-inch tunnel 1s due to Ilmprovement
in the equipment and part is due to the fact that the flow in the smaller
tunnel i1s steadier than that in the 10-foot tunnel.

Zero Counting

The number of gzeros or £ values was first counted with the help
of a photomultiplier cell. The cell was mounted behind a narrow slit in
front of an oscilloscope screen and the passage of the trace on the
screen thus produced pulses which, after sultable emplification, were
counted by means of a 29 gcaler counter. Every 512th pulse wes thus
reglstered on a mechanical counter. An average count comprised about
10% passages. Recently, an electronic gate circult was used for the
seme purpose.

Length Correct:l.on2

The measured values of 22 were corrected for the length 1 or

the hot-wire by means of the relation A% = (13%)peqgurea - Sg-2 12

where G = R.ll'fiv(o). The values for G glven 1n thls report are
uncorrected since thelr llmited accuracy does not warrent en elaborate
correction involving stlll less known higher derivatlives of f.

A length correctlion should be applled to the spectrum measurements.
However, 1t appears difficult to obtaln an enalytical expresslion for such
a correction. Check measurements were therefore made with wlres of

2Leng't.h correction formulas were derlved by the present authors in
a previous unpublished report submitted to the NACA. The procedure is
straightforward and similar derlvetions have been published in the mean-
time by Frenkilel. Thus there 18 no need to gilve the derivation here.



22 .- NACA TN 2473

different length and the correction was evaluated semiempirically. It—
turned out that the correction is unimportant for F(n) itself for

the wire length used. For the higher moments the correction becomes
more important but at the same time the accuracy of the measurements
decreases. Thus, it was felt-that. correction should be applied at

present only to A2. The rest of the data are presented uncorrected for
the length of-the wilre. :

RESULTS OF MEASUREMENTS
Decay
A few measurements of the decay of turbulence behind a grid were

made and figure 3 presents a sample. The decay measurements agree with
Batchelor and Townsend's (reference 23) measurements in the init:_Lg.l

stage of-decay; they show the nearly linear relation between 1/11.2 and
t or x/M for I_’z.ﬁ 100 (approx.) and the subsequent increase in the

rete of decay.

7@ Measurements

The value of A2 during decay was determined by Townsend's method
from the mean square of the differentiated wire output making use of the
interchange between time and space derivatives. Then

du 2
&)
1 fau\2
~ (%)

Also A2 was determined from the measured spectrums. The relation here
is

l=
2

ol
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A set of resulte 1s shown in figures 4 and 5. The estimated errors are —
indicated by the extent of the lines from the points. The straight line
with slope IOV/U 1s plotted 1n the figures to allow & comparison with -

the messurements. It 1s seen thet the measured d\2/dx 1s near 10v/U.
The meesured slope 1s a little smaller than 1OV/U. and the agreement is
not so close as that given by Batchelor and Townsend. However, in the

initial stege of decay there 1s no doubt that dke/dx is much closer .-
to 10v/U +than to Tv/U. The slope 10V/U 1is that which followe from

the assumption of isotropic turbulence 1f the relation of l/u? is
linear with x/M or +t. The slope 7v/U follows from certain other
similarity aseumptions (e.g., reference 24). The question of the slope 2

of A2(x) has been discussed sufficiently by Batchelor and Townsend

(references 23 and 25), Frenklel (reference 24), and others, and there
1s no need to repeat the arguments here.

Spectrum and Correlation Measurements in GALCIT 10-Foot Tunnel

More extensive measurements were made of the spectrum of turbulence.
These measurements include earlier investigations of the spectrum at large
Reynolds numbers in the 10-foot tunnel. These latter measurements were
done in order to check on the existence of a range of frequencles for

which the k 5/3 spectral law applies at Reynolds numbers which can be
reached in a wind tunnel. As mentioned before, these measurements do

not have the preclision of the later spectrum measuremen#é at lower
Reynolds numbers. The results are shown in figure 6 plotted in a reduced
scale

F(n) _ r 5 _
55T = © agaeins EF(O)n._ ¢
The simple spectrum

1 N -
1+¢t2 _

g =

is shown for comparison. The scatter of the points is evident and any
conclusions therefore are not too convincing. Here the simple spectrum
does not agree so well as in the measurements at smaller Reynolds
numbers. Figure 7 shows the same measurements in a logarithmic plot.

The line with a slope corresponding to n'5/3 1s included. These same -
measurements were used by Kérmfn (reference 22) for a similar comparison

with the n"5/3 law and his interpolation formula which here fits the
measurements very well indeed. A range of fair agreement with the
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'5/3 law can be found and, similarly, a rghge of agreement between the

corresponding r ?/3 law and the measured correlation curve (cf. fig. 8
and reference 22),_.The range and degree of agreement is ite similar
to the one found in the meantime by Townsend (reference 26) at lerge
Reynolds numbers. However, in view of the lnaccuracy of these measure-
ments end the arbitrariness in fitting thewse power laws to measured
points, agreements such as that presented in figures T and 8 should

be accepted with reserve. Figures 9 to 1l show the change in the cor-
relation curve with Reynolds number. During the past year the accuracy
of spectrum measurements has been very much improved and it is hoped
that future measurements at large Reynolds numbera can be made with more
definite resuits.

Spectrum Measurements in 20-Inch Tunnel
Measurements of -the spectrum of turbulence in the 20-inch (correl-

ation) tunnel were made with a very much improved technique. Figure 12
first shows a typical spectrum plotted in the conventional logarithmic

scale to allow & comparison of the amount af scatter with earlier measure-

ments. Then & serles of-spectrums plotted in the reduced form of .
= F(n) /F(0) eagainst ¢ = gF(O)n is shown in figures 13 to 16 for
various speeds U and grid sizes. All these measurements were made in

the initial phase of decay. In each figure the spectrum o = (1 + ;25'1
is shown for comperison. The measured values lie evidently qulte close
to the simple spectrum for values of { less than about 6. For higher
values the measured values fall below the simple spectrum, as has been
discussed in the section "General Considerations." In any cese the
largest part of the turbulent energy 1s doubtless contained in a reglon

vhere ¢ = (1 + QED'I 1s a very good approximation. The value of F(0)
had to be found from the experimental data. Thlis was dome by fitting

a curve of the form A to the messurements of the not=normalized
B +n - - : -

spectrum. In this way one findes a value e(0) from which F(0) 1is

obtained by normalizstion, that is, by the division of e(0) by the

area |[e{n) dn. The correctness of e{(0) could be checked somewhat by
compering the area \/;(n) dn with the result of a meassurement of the

the mean square of the totsl output (i,e., without frequency analysis)
which should be equal to the area. This was checked and found to be
true within I3 percent in all cases. -- : -

—

| |. wk
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Moments of Spectrum

The spectrum measurements in the 20-1nch tunnel were accurate enough
to allow the computation of the second and fourth moments of the spectrum
density F(n), that 1s, the quantities

2 =‘l:” n°f(n) dn Lo
;["=rnh‘r"(n) an -
0

The second moment is used to determine x2, a8 has been mentioned ebove;
the fourth moment furnishes

and

G = AFelv(0)

A set of curves showing n°F(n) and nhF(n) is given in figures 17
to 22. It is seen that the accuracy of the measurements and the fre-
quency range is sufficlent to evaluate the moments by graphical integra-
tion. The results are tabulated below: —

U M x A2
(cm/sec) (cm) (cm) (em?) G c
1130 1.68 48.5 0.054 13.2 2.6
1130 1.68 107.5 .123 13.8 3.0
1130 1.68 160.0 CL172 ‘11,9 2.7
630 1.68 k9.5 .088 10.7 3.0
630 1.68 109.5 229 10.2 3.00
630 1.68 156.5 .321 9.39 3.1
300 1.68 108.5 463 8.4
1500 1.68 108.5 057 15.6
1130 .818 108.5 .150 10.22
1130 9 T-7) 108.5 .133 8.20

During decay G 18 nearly constent 1n the initial range and then
decreases. Thie agrees wlth the results of Batchelor and Townsend.
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The measured sbsolute velues for G here appear slightly higher. In
the last column in the table sbove, the quantity

2 \L/5
u°2

is included and C is proportional to Loltzianskii's invariant in the

case where the simple spectrum appiies. Of course, F(0) and u.2,/u°2
vary considerably during decay. As seen from the teble, C 1s nearly
constant, that 1s, does not show a definite trend. Clearly, the accuracy
in the determination of C 1s not very good.

Behavior of Spectrum at High Frequencies

It has been mentioned before that Heisenberg's theory of the spectrum
of isotropic turbulence leads to an n~! law for high frequencies, It is
therefore of Interest to compute the sixth moments of the spectrum

;-6-=\]“n6F(n) dn
0

If F(n) ~ n~7, then the sixth moment should diverge. Plots of n6F(n)
Por two speeds are presented in figures 23 and 24. For the lower speed,
U = 630 centimeters per second, the area appears to be finite; for the
higher speed, U = 1130 centimeters per second, the frequency range of the
measurements 1s evidently not large enough to declde at all whether or
not the curves approach zero.

However, it should be kept in mind that the turbulent energy in the

frequency range that matters in the nfF(n) curve 1s extremely small.
Hence, the electrical noise and the pickup in thie range are of the order
from 20 percent to—80 percent of the total output and the measured values
of F(n) are therefore the difference between two falirly close numbers.

This difference is then multiplied by 1018 to lO2h in the important renge
and the resulting curve is therefore not very trustworthy. The only

definite result which can be asserted so far with confidence is that F(n)

does not vary more slowly than n~T 1in the high frequency range.
Batchelor has recently reported during a visit at GALCIT that Townsend
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2
has obtained measgurements of (E‘é‘ . Since
ot

33u>2 6
—] = n
343

5 .

a measurement of (&.31) is equivalent to n6, the sixth moment from ... .
ot

the spectrums. Townsend finds the sixth moment finite. This agrees with

the present measurements of the spectrum within the limitations discussed

above. Batchelor interprets this result as confirming the n~T power -

law plus & rapld cut-off at high frequencies. This concluslon appears

premeture because of the difficultles stressed above.

S8pectrum at Very Large Distances from Grid

Very far downstream from the grid, in the so-called final stage of
decay, the spectrum and the correletion curve should epproach a Gauessisn
digtribution. Measurements of the time correlatlion curve were made by
Batchelor and Townsend (reference 17) and the conclusion wes reached
thet the final stage of decay is rapidly approached for x/M > 300.

The spectrum of turbulence was therefore measured at x/M = 1000
behind a fine mesh grid. The measurements are plotted in flgure 25
compared wlth the Gausslan spectrum compatible with the measured value
of A; that 1s, the spectrum was evaluated as usual and A was deter-
mined. Then the Gausslan spectrum was plotted which would give the
same A.

The measured points at very low frequency are, as mentioned before,
not too trustworthy. The rest of the curve approaches the Gaussian.
Actually this latter fact becomes more obvious 1f one tries to plot these
nmeesurements in the same form as the spectrums at lower values of x/M.
Figure 26 shows that type of plot and evidently 1little similarity with

the spectrum ¢ = (1 + ga)'l can be found here. Similarly, one can

convince oneself that with increasing x/M the measured spectrums tend
toward the Geusslan. Stlll, from the present set of measurements the
Gausslan form 1s not reached within the accuracy of measurement. Here
future work 1s needed to see whether x/M = 1000 1s still too small or
whether other factors enter.
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Spectrum of Derivative

The function F(n) 1s defined as the power spectrum of wu(t).
Similarly, one can define a power spectrum W(n) of the derivative
du/dt. If W(n) is not normalized one has

2 .
(a—:) _ j: W(n) an

On the other hand,

%EC§5)2 = hﬂe‘ij n?F(n) dn
w2 \0t 0

¥(n) . LPnF(n)

ul

and, consequently,

Figure 27 shows measurements of- W(n) plotted in comperison with n2¥(n).

The agreement is seen to be excellent. This is e welcome check on the
consistency of the measurements. -

Zero Counts

A sample set of xe values obtained from the counting of zeros
using an electronic gate circuit is included in figures 4 and 5. The

value of A2 was obtained from the number of zeros assuming a Gausslan
distribution for both the function wu(t) and the derivative du/ot.

Then A° is given simply by - -

A2 = 12 i
WNo

Earlier meapurements using the photocell method gave essentially the
same result. As computed from the zeros, L?_ behaves as functions

of x quite similar to the A2 values obtained from the other methods,
but the absolute values of A° as obtained from the counts are consist-
ently larger, especially at the high speed. How much of-this difference
in absolute value can be traced to the deviation from the Gausslan

[
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distribution and independent probabilities of wu(t) and du/dt remeins
to be investigated. That Ng is nearly Geussian in § 1s shown in

figure 28, This is, however, obviously only necessary but not sufficilent
for independence between u(t) and Ou/dt. It was first believed that
the better agreement for larger velues of A reflected the lack of
regsolution of the system. However, the resolution of the new circult
ghould be very much better and the difference between the A\ measure-
ments and the zero counts probably has to be traced to other reasons.

CONCLUDING REMARKS

The results of an investigetion of the spectrum of isotropic turbu~
lence led to the followlng conclusions:

1. The spectrum and correlation functions in the turbulent flow
behind a grid at large Reynolds numbers (RN 107 besed on the grid meeh)

show a range of :E‘requencies for which the n~ 5/ 3 or r 2/ 3 laws, respec-
tively, apply. Kérmin has shown that these measurements can be repre-
gsented well by an interpolation formule for the spectrum of the form

Ra) . (14 )5/

F(0)

vhere
L= 12':-F(O)n

2. The measurements at smaller Reynolds numbers of the order of 101"
show that in the inltial stage of decay the bulk of the turbulent energy
lies in a frequency range 1n which the spectrum is closely approximated
by the simple relation

Efg)_,: (1+ §2)-1

F(0)
corresponding to an exponential correlation function.

3. The mean square of the frequency -1—12 or the corresponding micro-
scele A was measured by differentiation and from the spectrum. The
messurements agree closely and the slope of A\ (x) i1s nearly linear in
the initiel stage of decay. The value of the slope was found to be a
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little less than 10v/U. The turbulent energy wvas found to vary down-
gtream according to the law (u')2 ® 1/t for distances up to about

100 mesh. The quantity G = Af1V(0) was obtained from the spectrums
and G was found nearly constant in the initial stage of decay. It
decreases in the leter stage; G increases with speed. These results
are in genersl agreement—with Batchelor and Townsend's measurements.

4, The sixth moments of the spectrums were computed. Here the limlt
of accuracy of the measurements is reached and conclusions have to be
tentative. The sixth moments appear to be finite and hence F(n) at
very high frequencies should very faster than n-T. Certainly F(n)
does not vary slower than n~T.

5. The spectrum at x/M = 1000 was found to approach a Gaussian
curve.

6. Using some simplifying assumptions, A was also obtained from a
count of the average number of zeroe of the fluctuating velocity compo-
nent. The general trend of X2(x) agrees with the measurements by other
methods; the absolute values of A as obtained from the zero counts are
somewhat lerger. It was not possible yet to declde whether this differ-
ence is significant.

California Institute of Technology
Pasadena, Celif., August 16, 1949



NACA TN 2473

[ 2}
.

10'

11.

31

REFERENCES

Taylor, G. I.: 8tatistlical Theory of Turbulence. Parts I-IV. Proc.
Roy. Soc. (London), ser. A, vol. 151, no. 873, Sept. 2, 1935,

pp. 421-478.
Von Kérmfn, Th.:

Turbulence. Jour. Aero. Sci., vol. 4, no. 4, Feb. 1937, pp. 131-138.

The Fundamentals of the Statistical Theory of

De Kédrmén, Theodore, and Howarth, Leslie: On the Statistical Theory

of Isotropic Turbulence. Proc. Roy. Soc. (London), ser. A., vol. 16k,

no. 917, Jan. 1938, pp. 192-215.

Kolmogoroff, A. N.: Dissipation of Energy in the Locally Isotropic
Turbulence. Comp. rend., acad. sci. URSS, vol. 30, no. L, Feb. 10,
1941, pp. 301-305; vol. 31, no. 6, 1941, pp. 538-540; vol. 32,

no. 1, July 10,

Batchelor, G. K.:

1941, pp. 16-18.

Kolmogoroff's Theory of Locally Isotropic Turbu-

lence. Proc. Cambridge Phil. Soc., vol. 43, pt. 4, Oct. 1947,

Pp. 533-559.

. Onsager, Lars: The Distribution of Energy in Turbulence. Abstract,

Phys. Rev., vol. 68, nos. 11 and 12, second ser., Dec. 1 and 15,

1945, p. 286.

Von Weizsdcker, C. F.: Das Spektrum der Turbulenz bel grossen
Reynoldsschen Zehlen. Zeitschr. Phys., Bd. 124, Heft 12, Sept. 8,
1948, pp. 614-627.

Helgenberg, W.:
Phys., Bd. 12h,

Taylor, Goeffrey

Zur statistichen Theorie der Turbulenz. Zeitschr.
Heft 7/12, 1948, pp. 628-65T.

Ingrem: The Spectrum of Turbulence. Proc. Roy. Soc.

(London) ser. A, vol. 164, Feb. 18, 1938, pp. 476-490.

Batchelor, G. K.:
Introduction.
London), 1948,

Townsend, A. A.:
Derivatives in
vol. 43, pt. &,

Batchelor, G. K.:
Proc. Roy. Soc.
Pp. 513-532.

Recent Developments in Turbulence Research.
Proc. Seventh Int. Cong. Appl. Mech. (Sept. 1948,
PP. 27"'56-

Measurement of Double and Triple Correlation
Isotropic Turbulence. Proc. Cambridge Phil. Soc.,
Oct. 1947, pp. 560-5T0.

The Role of Big Eddies in Homogeneous Turbulence.
(London), ser. A, vol. 195, no. 1043, Feb. 3, 1949,



32

13.

14,

15-

16.

17.

18.

19.

20.

21.

e2.

23.

2k,

NACA TN 2473

Kempé de Fe’ri_gt » J.: Le tenseur spectral de la turbulence homogene
non isotrope dans un flulde incompressible. Comp. rend., acad.
BCi. (PariS), .t. 227, Oct. 18, 19""8, ppc 7&-7610

Lin, C. C.: On the Law of Decay and the Spectrum of Isotropic
Turbulence. Vol. 2, pt. I. Proc. Seventh Int. Cong. Appl. Mech.

Von Kérmfn, Th., and Iin, C. C.: On the Statistical Theory of
Isotropic Turbulence. Vol. II of Advances in Applied Mechanics,
R. von Mises and Th. von Karmﬁn, eds., Academlic Press, Inc.

(New York), 1951, pp. 1-19.

Loitelanskii, L. G.: Some Basic Laws of Isotropic Turbulent Flow.
CAHI Rep. No. 440, 1939. (Available in English translation as
NACA TM 1079, 1945.) -

Batchelor, G. K., and Townsend, A. A.: Decay of Turbulence in the
Final Period. Proc. Roy. 8oc. (London), ser. A, vol. 194,
no. 1039, Nov. 9, 1948, pp. 527-543. _

Von Ka.rma.n, Th.: Progress in the Statistical Theory of Turbulence.
Proc. Nat. Acad. Sci., vol. 34, no. 11, Nov. 1948, pp. 530-539.

Simmons, L. F. G., and Salter, C.: Experimental Investigation and
Analysis of the Velocity Variations in Turbulent Flow. Proc. Roy.
Soc. (Lundon), ser. A, vol. 145, no. -854, June 2, 193k,
pp. 212-23k,

Wang, M. C., and Uhlenbeck, G. E.: On the Theory of the Brownian
Motion II. Rev. Modern Phys., vol. 17, nos. 2 and 3, April and JuJ,y
1945, pp. 323-3k2.

Dryden, Hugh L.: Turbulence Investigation at the National Bureau of
Standerds. Proc. Fifth Int. Cong. Appl. Mech. (Sept. 1938,
Cambridge, Mass.), John Wiley & Sons, Inc., 1939, pp. 362-368

Rice, S. 0.: Mathematical Analysle of Random Nolse. The Bell System
Tech. Jour., vol. 23, no. 3, July 1911-1!- pp. 282-332; vol. 2k,
no. 1, Jan. 1945, pp. 46-108. :

Batchelor, G. K., and Townsend, A. A.: Decay of Isotroplc Turbulence
in the Initial Period. Proc. Roy. Soc. (London), ser. A, vol. 193,
no. 1035, July 21, 1948, pp. 539-558.

Frenkiel, F. N.: On Third-Order Correlation and Vorticity in Isotropic

Turbulence. Quart. Appl. Math., vol. VI, no. 1, April 1948,
pp- 86"% ’ .

-



-y

NACA TN 2473 33

25. Batchelor, G. K., and Townsend, A. A.: A Comment on F. N. Frenklel's
Note "On Third-Order Correlation and Vorticity in Isotropic Turbu-
lence." Quert. Appl. Math., vol. VII, no. 1, April 1949, p. 120.

26. Townsend, A. A.: Experimental Evidence for the Theory of Local
Isotropy. Proc. Cambridge Phil. Soc., vol. Uk, pt. L, Oct. 1948,

pp. 560-565.



Gontraction

T

e b e s S S S —

Figure 1l.- Vertical section through GALCIT 10-foot wind tunnel.
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Figure 3.- Energy decay behind grid. M = 1.68 centimeters;
U = 1130 centimeters per second.
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Figure 5.- Plot of A2 agalnst x. U = 630 centimeters per second;
M = 1.68 centimeters.
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Figure 6.- Reduced spectrum.
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Figure 8.- Comparison of two~thirds law with experimental correla-
> square centimeters per second3; A = 1.0;

tion curve,
RN = 300,000,
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Figure 9.- Distribution of Ry. M =k inches; x/M = 40.4; RN = 300,000.
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Figure 10.- Distribution of Ry. M = 4 inches; x/M = 40.4; RN = 100,000.

Ele ML VOVN

£y



RN

o0 |

I

-4 6

8
y/m

LO

.2

.4

Figure 11.- Distribution of Ry. M = 4 inches; x/M = 40.4; RN = 40,000.
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Figure 12.- Energy spectrum of turbulence produced behind grid.

U = 1130 centimeters per second; x/M
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Figure 13.- Reduced spectrum. U = 1130 centimeters per second;
M = 1.68 centimeters; RN = 12,400.
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Figure 14,- Reduced gpectrum, -U = 630 centimeters per second;
M = 1.68 centimeters; RN = 6900.
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Figure 15.- Reduced spectrum. - x/M = 65; M = 1,68 centimeters.
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Figure 18.- Becond moments. U = 630 centimeters per second;
M = 1.68 centimeters.
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Figure 23.- Sixth moments, U = 1130 centimeters per second;
M = 1.68 centimeters.
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Figure 26.- Plot of measurements of spectrum of turbulence at x/M = 1000
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Figure 2"{ - Comparison of measurememts of W(n) _and n2F(n).
= 1130 centimeters per second; x/n = 135.5.
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Figure 28.- Probability distribution of K for two turbulence intensitiles.
U = 1133 centimeters per second; x/M = 138.5.
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